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We extend the simulation techniques of Kraichnan (1970,1976) to study the effective 
diffusivity of a scalar field in a turbulent fluid. In  our model we have introduced an 
adjustable helicity parameter and a technique for simulating molecular diffusivity. 
The results show that for non-helical turbulence the self-consistent perturbation 
theory of Phythian & Curtis (1978) gives excellent values for the effective diffusivity 
over a wide range of values for both the molecular diffusivity and the parameters 
describing the turbulence. 

This ceases to be the case immediately the helicity is given a non-zero value. Wide 
departures are observed between the theoretical calculation and the simulation. Our 
conclusion is that non-perturbative effects are very important in the presence of 
helici ty . 

1. Introduction 
In this paper we report on a numerical simulation of the time evolution in three 

dimensions of a scalar field subject to molecular diffusion and convection in a 
turbulent fluid. The problem of calculating the time evolution of a scalar field under 
such conditions is a long-standing one. We investigate the short- and long-time 
behaviour of the evolution in some particular cases and compare the results with 
theoretical calculations, paying particular attention to the comparison between the 
long-time effective diffusivity measured in the simulation and predicted in the 
self-consistent perturbation series of Phythian & Curtis (1978), in all cases a variable 
helicity is present in the turbulence and the dependence of measured quantities on 
the parameter controlling the helicity is carefully examined. 

Our simulation is an extension of the original studies of Kraichnan (1970, 1976, 
1977). The new features that we have included are (i) the adjustable helicity for the 
turbulent flow and (ii) a molecular diffusivity for the fluid. We have implemented 
a new algorithm for the simulation which allows the molecular diffusivity to be 
introduced. Our ability to vary both the helicity and the molecular diffusivity proved 
to be extremely useful and provided revealing results. 

The turbulence was represented by an incompressible random velocity field which 
was chosen from a Gaussian distribution. For simplicity the autocorrelation function 
of the velocity ensemble was chosen to be of a simple kind (to facilitate the theoretical 
calculation) and was characterized by only one length- and one timescale. However, 
the simulation does not depend for its success on this choice of spectrum for the 
turbulence or on the precise number of relevant spacetime scales. 

All computing was carried out on the ICL Distributed Array Processor (DAY) at  
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Queen Mary College, London, and we were able to exploit the potential of the DAP 
for producing large numbers of statistics to obtain good numerical results in a 
reasonable computation time. 

I n  $2 we show how the velocity field is constructed for a given autocorrelation 
function. The way in which we introduce an adjustable helicity is explained, and the 
particular autocorrelation function used in our simulation is presented. In  $3  the 
numerical-integration procedure is discussed and we present our algorithm for 
evolving the scalar field subject to diffusion and convection by the turbulent fluid. 
In  $4 the simulation on the DAP and the calculation of errors are discussed. We 
present the results of the simulation and the comparison with theory in $95 and 6. 
The results for the short-time behaviour are discussed in $5 for various values of the 
parameters. The results for the long-time behaviour are given in $6, where the 
dependence of the effective diffusivity on the molecular diffusivity and the helicity 
is presented and compared with theory. I n  $7 we present our conclusions. 

2. The velocity-field ensemble 
Following Kraichnan (1970, 1976) we generate the velocity field u(x ,  t )  as a sum 

of Fourier components, each of which is determined by certain parameters distributed 
according to various probability distributions. The number N of terms in the sum 
is sufficiently large so that an ensemble of velocity fields is Gaussian in character up 
to  corrections of order 1 / N .  I n  this case all higher correlation functions are 
determined by the autocorrelation function 

We have assumed that the ensemble is homogeneous, and we also assume that it is 
isotropic, in which case, for incompressible fluids, we have 

(2.2) l $ j (k ,w)  = @ ( k , w )  (k28i j -k tk j )+  Y ( k , ~ ) i e i ~ j k , ,  

where Y(k, w )  represents the presence of helicity. 
A particular member of the velocity-field ensemble is then realized by 

This is more elaborate than either of the forms used by Kraichnan (1970, 1976), but 
the presence of the angle $, allows us to introduce an adjustable amount of helicity 
into the turbulence. The random variables (r , ,~ , ,  k,, w,) are chosen in the following 
way. 

The vectors en and X,  are distributed uniformly and independently over the unit 
sphere. The wavenumber k ,  and the frequency variable are independently distributed 
according to a probability distribution P(k,  w ) ,  which in practice is taken to have the 
factorized form E ( k 2 ) D ( w ) .  I n  what follows the angle variable $, is set equal to a 
given value $ (for all n) ,  which we call the helicity parameter. It is sufficient that 
I $ I d in. The overall normalization of the velocity field A is determined by the value 
for the r.m.s. velocity u,,. 
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If h and SZ denote the helicity and r.m.s. vorticity respectively then 

U: = ( U - U )  = $A2 

77 

N 
h =  (u*(Vxu))  =#A2 

= $A2N d3kE(k2) k3sin2$(k), 
I N  \ r 

S 
\ (2.4) 

Q2 = ((V x u ) ~ )  = $A2 (, z ki) = #A2N d3kE(k2) k4. J 
n-1 J 

The last equality in each line holds for N sufficiently large. 

are both simply related to E(k2). We, find 
Because we restrict ourselves to a constant helicity parameter $r, @J and Y in (2.2) 

(2 .5)  I @(k, w )  = i ( 2 ~ ) ~  A2NE(k2) D(w),  

Y(k, w )  = $ ( 2 ~ ) ~  A2NE(k2) kD(w) sin2$r. 

In  our model then 
Y(k,w) = @(k,w)ksin2$ 

I n  order to keep the problem of simulation as simple as possible we consider the 
case of one-scale turbulence. These are the same circumstances as investigated by 
Kraichnan (1970, 1976, 1977). Furthermore, because i t  makes the theoretical analysis 
a little easier, we will work with a &shell for E(k2) ,  thus 

1 
E(k)  = -6(k-k,), 

4nk; (2.7) 

where k, is the characteristic wavenumber of the turbulence. For the frequency 
distribution we choose 

We then find 

I h = ut k, sin 2$, 

SZ2 = ui k:, 
(u(x, t)*u(x’, t ’ ) )  = u;- sin kor e-$g(t-t’)2, and 

k” r 

(2.9) 

(2.10) 

where r = Ix-x’ l .  
We also have 

( ~ ( x ,  t)*u(x’, t ’ ) )  = k, sin2$(u(x, t)*u(x’, t ’ ) ) ,  (2.11) 

where o(x, t )  is the vorticity given by o = V x u. 
Although our spectrum is unrealistically simple the results obtained are nevertheless 

significant. More-complicated spectra with more than one scale in the turbulence are 
of greater interest, but require more computing effort in the simulation. We restrict 
our attention to the simplest case for the present. 

As an indication of how well the simulation reproduces the correlation function we 
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calculated the ratio of the simulated functions to the analytic forms in equations 
(2.10) and (2.11) for various values of the parameters. Over a range of over three 
correlation lengths and one correlation time these ratios were unity within statistical 
errors, which were typically less than 1 yo. 

A more stringent test of the simulated ensemble concerns its Gaussian character. 
Assuming Gaussianity, we expect to find that 

(u"x, t )  u(x ,  t ) *u(x ' ,  t ' ) )  = %;(U(X , t ) ' f f (X ' ,  t')). (2.12) 

A comparison of the computed value of the left-hand side to the computed value 
of the right-hand side for N = 64 (see (2 .3) )  in the case k,  = 6 ,  w, = 1 ,  sl. = 0 showed 
that this equation is satisfied within statistical errors (in 1 %). This agreement was 
checked over more than three correlation lengths in space and one in time. We expect 
deviations to  be of order 1/N, and this expectation is verified. For reasonable values 
of N any departure from Gaussianity is certainly negligible. 

3. Numerical-integration procedure 
I n  the absence of molecular diffusivity the problem of following a particle path in 

a velocity field u(x ,  t )  is solved by integrating, to sufficient accuracy, the differential 

( 3 . 1 )  
equation 

When molecular diffusivity K is present we must deal with the stochastic differential 

(3 .2a)  equation k = u(x ,  t )  + q ( t ) ,  
the discrete version of which is 

k = u(x ,  t ) .  

AX = ~ ( ~ , t ) A t + ( 2 ~ A t ) i < .  (3 .2b )  

Here q ( t )  is a Gaussian random variable with zero mean and autocorrelation function 
(q( t )*q( t ' ) )  = 2 4 t - t ' ) .  The quantity 5 is a Gaussian random variable of zero mean 
and unit variance. It is well known that for infinitesimally small At the resulting 
probability distribution $(x, t )  of the particle position x satisfies the diffusion 
equation 

' + v ' ( U $ )  at = Kv2$. (3.3)  

If ( 3 . 2 b )  is used to increment the particle position, then for finite At there are 
corrections to (3.3) or order At. I n  order to  increase the accuracy of the method most 
efficiently i t  is advantageous to use a modified form of (3.2b) which eliminates errors 
up to a specified order in At. A modification of this kind is discussed in Drummond, 
Duane & Horgan (1983), where the elimination of the O(At )  errors is achieved by the 
prescription 

AX = ~ ( x , t ) + $ A t  u * V + -  u ( x , t ) + i A t ~ V ~ ~ ( ~ , t )  A t + ( 2 ~ A t ) t < ,  (3.4) [ ( 3 1 
where 5 is normally distributed about zero with a variance matrix 

<ti&.> = f%j+i("i, j+Uj,i)At.  (3 .5)  

ItJ is in fact more convenient to adopt a slightly different prescription which differs 
from (3.4) only in irrelevant orders of At. This prescription takes the form of an 
extended Runge-Kutta scheme : 

AX = u(x' ,  t )  At + (KAt)? (tl +c2), (3.6) 
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where t’ = t+iAt, 

X‘ = x+$Atu(x,t)+(KAt)ic,. 
(3.7) 

c1 and & are independent random variables each with zero mean and unit variance. 
The superiority of the extended Runge-Kutta scheme over the scheme of (3.4) is 

that in the former case no derivatives of the velocity field need be calculated. The 
saving in computation time is significant: the time required by an nth-order 
Runge-Kutta scheme only rises like n. Higher-order schemes of the kind shown in 
(3.4) require times that increase probably like n!. 

We use a third-order Runge-Kutta scheme, which is described in the appendix. 
We note, however, that, although efficient, this scheme minimizes the error a t  O(At)3 
rather than reducing it to  O(At4). 

For zero diffusivity when (3.1) is appropriate we also implemented a fourth-order 
predictor-corrector scheme of the kind used by Kraichnan. In  this case the results 
of this method did not differ significantly from the results of the Runge-Kutta 
scheme. 

4. The simulation 
The DAP is a 64 x 64 array of microprocessors acting in parallel. I n  realizing the 

simulation of the turbulent fluid outlined above, it was convenient therefore to  use 
a velocity field with N = 64 components. Other values of N were also studied for the 
purposes of comparison. 

In a typical cycle of calculation the machine contained 64 different velocity fields, 
each with 64 different particles, the starting points of which were separated by two 
velocity correlation lengths. The histories of these 4096 particles were followed 
simultaneously for any desired number of time steps with an appropriately chosen 
At smaller than the smallest timescale characterizing the turbulence. This cycle was 
repeated as many times as was feasible in order to reduce the statistical errors. In 
a typical run the number of cycles was 25; thus the flow of 102400 particles in 1600 
velocity fields was investigated. The average of relevant quantities over the ensemble 
of paths so generated was computed. I n  order to  estimate the statistical error on these 
averages a mini-ensemble of estimators for a particular averaged quantity (g say) was 
constructed. Each member (g)(+) of the mini-ensemble was the average value of g 
taken over the paths of one velocity field u ( ~ ) .  The members of the mini-ensemble were 
statistically independent because the velocity fields were. The error c on a final 
estimator ( 9 )  for g is computed by the usual methods from the mini-ensemble: 

It is interesting to note that a calculation of u that treats all particles as being 
statistically independent of each other leads to a value very similar to that obtained 
by the method outlined above. This is important because it demonstrates that all 
the particles moving in one velocity field are substantially uncorrelated and hence 
make a maximum contribution to the reduction of errors. Consequently we are not 
wasting computing effort by duplicating particle flows. 
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5. Short-time evolution 
We are interested ultimately in the long-time evolution of the particle distribution. 

However, the dispersion a t  long times is the accumulated result of many processes 
occurring over short time intervals. In  order to have confidence in the results of the 
simulation and the integration procedure it is important to check that the evolution 
of averaged quantities (e.g. ( x 2 ( t ) )  and ( ( ~ ~ ( t ) ) ~ ) ) )  over short times is correctly 
reproduced by our numerical techniques. 

For an appropriately short time interval those quantities may be expressed as 
Taylor series in the time t .  In the case of homogeneous turbulence without molecular 
diffusivity we have 

(x2> = (u'> t 2 - & ( D ~ ' D ~ ) + & j ( D 2 ~ * D 2 ~ )  t6+O(t8) ,  (5.1) 

where D = a/at+u*V is the material time derivative, and all correlations are a t  equal 
times and positions. If we use the spectrum described in $2, (2.7)-(2.11), and use the 
assumed isotropic and Gaussian nature of the turbulence, we find 

(x" t ) )  - u: t 2  = - &(wi u; + +u; ki (  1 - iz") t 4  

+&(304, u $ + w ~  U; k:($-x2)  +u$ k4,($-+z2)) t6 +O(t*) E Yz(t) ,  (5.2) 

where x = sin 2$. We have also 

((x"t))")-$u4,t4 = -&(w:u;+uBg k i (h - iX2) )  t6+O(t8) = Y4(t). (5 .3)  

It is important to recognize that these equations are only strictly correct in the limit 
of infinite statistics and large N .  In  practice these equations give the predicted value 
of some required mean, which is to be compared with a random number which is the 
estimator for that mean. For this comparison to be significant we require that the 
error on the estimator is much smaller than the magnitude of the signal that we are 
seeking. In order to test the higher-order terms in the short-time perturbation theory 
this error must be much smaller than the terms on the right-hand sides of (5.2) and 
(5.3) (denoted by & ( t )  and &(t )  respectively). In  order to achieve this most efficiently 
it is useful to take advantage of the cancellation of errors which may occur when 
quantities are measured over the same ensemble. We introduce statistical variables 
X 2 ( t )  and X4(t), the mean values ofwhich, in aperfect ensemble, reduce to the left-hand 
sides of (5.2) and (5.3) respectively. These variables are given by 

n-1 

r-0 

n-1 

X,( t )  = x2( t )  - tAt x u2(x,, t r ) ,  

X,( t )  = (xz(t))'- t3At x (u2(xr,  t , ) )2 ,  
r-0 

(5.4) 

(5 .5)  

where x, = x, t ,  = t ,  and (xr ,  t,) is the position and time of the particle after r steps. 
The size of the time step is At. 

Of course any choice of estimators is suitable provided they are Gaussian random 
variables whose means are predictable using (5.2) and (5.3) respectively. Note that 
the ratio R = ( ( ~ ~ ( t ) ) ~ ) / ( x ~ ( t ) ) ~  is not a suitable estimator even though the predicted 
value is simple. Our choice is justified because it works well. 

In figures 1 and 2 we plot the ratios 
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R2 ! 
1.2  I 

I 

1.2 i’ 

e 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

t 

FIGURE 1. The ratio R, = ( X 2 ( t ) ) / Y J t ) ,  with Y,(t) given by theory in (5.2) and X,( t )  defined by 
(5.4). The time axis is scaled as follows: (a)  k, = 1, w, = 6, x2 = 0, t = 4 3  t /w , ;  ( b ) l ,  3, 0, 4 3  i / w o ;  
( e ) ,  6, 1, 1.0, t / k o ;  ( d )  6, 1,  0.5, i / k o ;  ( e )  6, 1, 0, t /k, .  The helicity parameter is x = sin2$. The 
integration time step At is 0.02 (0 )  or 0.004 (0). For case ( d )  results are shown for different 
numbers N of components in the velocity field: 0,  64; 0, 32; A, 16. Otherwise all results are 
for N = 64. 

against t for times small compared with any characteristic period of the turbulence, 
i.e. Qt ,  w,t < 1 (see $2). Various values of the helicity, k,, and wo are chosen. The ratio 
R2(t) is very close to unity in all cases, except for an inevitable discrepancy a t  
extremely short times due to the finite step length of the integration procedure. 

For short times R4(t) is unity, and the deviation for larger times is compatible with 
the correction term in (5.3), which behaves like t8 .  Unfortunately this term is very 
hard to calculate and so has not been included. Originally the O(t6)  term was omitted 
from (5.2) and a similar discrepancy was found in R,(t), which was corrected by the 
subsequent inclusion of this term. Since these results depend heavily on the 
assumption of Gaussianity and on the effectiveness of the integration procedure, the 
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FIGURE 2 .  As figure 1 for the ratio R, = ( X , ( t ) ) /  Y,(t), with I ; ( t )  
given in (5.3) and -Y,(t) defined by (5 .5) .  

success of the comparison is strong support for both aspects of the simulation. The 
error bars are calculated in the way described in $4. That the errors are so small 
indicates that the accumulated statistics are sufficient. 

When molecular diffusivity is introduced we, find 

( ( ~ ( t ) ~ ) ' )  - 6O~'t' -@: t4 = 2 0 ~ ~ ;  f 3  - 8~ 'u :  k; t4 + [ E K ~ ~ ! - ~ K W : ]  u;t5 
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0.8 

83 

J Q g e  - = - = 

I 1 1 1 1 1 1 1 1 1  

This formula omits certain terms O(u$) such as K2u$ktt6, mainly because they are 
difficult to  calculate. It is plausible for our choice of parameters that  they are small 
and the numerical results bear this out. 

Note that the first term on the right-hand side of (5.7) is the term obtained by 
Saffman (1960) which shows the negative interaction of vorticity and diffusivity. As 
before we use specially chosen statistical variables to  test (5.7) and (5 .8) ,  namely 

xm = - <xt(t)>, (5.9) 

- a t )  = x4( t ) -< (x : ( t ) ) z ) ,  (5.10) 

where x,(t) is the path followed by an auxiliary particle for which there is no turbulent 
transport (uo = 0 )  but which diffuses using the same random numbers and integration 
procedure as the particle with which i t  is associated. 

The ratios 
(5.1 1 )  

are plotted against time in figure 3 for various values of the parameters. Again the 
agreement with theoretical prediction is so good that we can be confident that the 
numerical procedures of the simulation are working extremely well. 

6. Long-time behaviour 
Kraichnan (1970, 1976, 1977) in his computer studies of turbulent diffusion 

confirmed the idea that at large times the dispersion of particles increases linearly 
with time and that there is an asymptotic diffusivity. Our calculations are entirely 
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FIGURE 4. The eddy diffusivity ~ ( t )  = i ( x ( t ) .u (x ( t ) ,  t ) )  plotted against t k,t : (a )  k, = 6, 
w, = 0.1, $ = 0, K = 0; ( b )  6, 1 ,  0, 0. 

consistent with those of Kraichnan. Moreover, because of the power of the DAP to 
produce large statistics we were able to follow the particle motion for larger times 
than Kraichnan. I n  some instances for over 70t,, where to is characteristic of the time 
taken by the particle to travel one velocity-field correlation length and is given by 

In the absence of molecular diffusivity we can define an instantaneous effective 
to' = U o k o .  

(6.1) 
diffusivity q( t )  by N) = K x ( t ) . u ( x ( t ) ,  t ) ) .  

We show the behaviour of r ( t )  for two particular cases in figure 4. The value of 
q(t) rises from zero, and after a few correlation times to settles down to a fixed value, 
which it then maintains within statistical errors. These values are to be compared 
with the measured values of +d(x2(t))/dt. I n  our simulation the agreement between 
these two sets of values is extremely good (as i t  should be): the ratio is consistent 
with unity within errors. These results justify the confidence we place in our 
numerical procedures. 

Our aim is to compare the simulation with an appropriate theoretical calculation. 
A relatively simple scheme is the self-consistent perturbation theory proposed by 
Phythian & Curtis (1978). I n  fact these authors demonstrated that their calculation 
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for the effective diffusivity was likely to be consistent with the results of Kraichnan 
(1970, 1976, 1977). 

There were two barriers to a detailed comparison between the theoretical results 
and Kraichnan’s simulation. The first was that for reasons of analytic simplicity 
Phythian & Curtis assumed a time dependence for the correlation functions of the 
form e-wd t-t‘l rather than the Gaussian exponential e-%i(t-t’)2 used by Kraichnan 
and ourselves. We have accordingly calculated in the Phythian & Curtis scheme but 
using the Gaussian time dependence. The second barrier was that Kraichnan’s 
simulation did not contain the effects of molecular diffusivity. One of the attractions 
of the self-consistent perturbation theory is the very simple way in which the 
molecular diffusivity enters into the calculation. We have included the molecular 
diffusivity in our simulation using the techniques explained in $3. 

In  the perturbation-theory calculation the effective diffusivity q at long times is 
obtained as the solution of an equation of the form : 

7 - K  = ml), (6.2) 

where F(q)  is obtained as a formal power series in ui, and K is the molecular diffusivity. 
F ( q )  depends on the parameters of the velocity ensemble but not on K .  Using the 
correlation functions defined by (2.7)-(2.1 l), we have 

x exp(-&~(~+~’)~-&“+7’’)~-qrk~(7+~’’)}  

The functions f(z) and g(z) are defined by 

i 1 ’  
g(z) = -1 dzz(l-z2)e-z(1-Z). 

2 -1 

(6.3) 

Note the presence of the helicity parameter $ in (6.5), which allows us to  obtain 
a theoretical prediction for the helicity dependence of the effective diffusivity. Our 
ability to adjust the helicity parameter in our velocity ensemble is a further 
advantage of our simulation and provides some of the most significant information 
contained in our results. 

I n  comparing the theory with the simulation i t  is necessary to consider the cases 
of zero and non-zero helicity separately. For zero helicity and certain values of the 
other parameters, we show in figure 5 the graphs y = F,(q) and y = F,(q) + F2(q). Curve 
(b)  of figure 5 already well represents the frozen-turbulence limit w,+O. The effective 
diffusivity is obtained to first and second order respectively by finding the points at 
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FIGURE 6. The theoretical curve of V(K) for k, = 6, wo = 1, yk = 0 with the points (0 )  measured 
from the simulation. Numerical errors are smaller than the size of the data points. 
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FIGURE 7. A plot of (xz((t)) versus i =  k,t for k, = 6, wb = 1, $ = 0 and various values of K :  

( i )  1 ;  (ii) 0.5; (iii) 0.2; (iv) 0.1; (v) 0.05; (vi) 0. 

which these curves intersect the line y = 7 - K .  The resulting predictions for V ( K )  are 
shown in figure 6. The black circles represent the experimental points from the 

i d  simulation measured by 

6 dt 

The size of the circles much exceeds the statistical error. A plot of ( x 2 ( t ) )  for various 
values of K is shown in figure 7. Clearly the theoretical calculation to second order 
reproduces the results of the simulation with complete accuracy all the way from zero 
molecular diffusivity up to relatively large values. As a check on the perturbation 
series we have computed the third-order term in the series for F(7)  and we find that 
it is of negligible size, thus leaving the second-order (or two-loop) results unchanged. 

It is reasonable to conclude that the self-consistent perturbation theory of 
Phythian & Curtis is both highly convergent and very accurate in predicting the 
effective diffusivity of Gaussian turbulence. Further confirmation of this conclusion 
is to  be found in table 1, where we exhibit a comparison between the simulation and 
theory for different choices of parameters ranging from frozen turbulence 
(uoko/wo - 10') to the near-Markovian limit (uoko/w,  - 0.3). 

The real surprise in our results is the discrepancy that develops between the 
simulation and theory when the helicity parameter is increased from zero up to its 

g ( K )  = - - ( X 2 ( t ) ) .  (6.7) 
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ko a 0  K 7 (simulated) 7 (theory) 

6 10-6 0 0.172 f 0.003 0.176 
6 0.1 0 0.172 f0.003 0.176 
6 1 0 0.179 fO.OO1 0.18 
6 1 0.1 0.238 f0.002 0.232 
6 1 0.3 0.370f0.004 0.371 
6 1 0.4 0.452 f0.006 0.460 
3 1 0 0.376f0.005 0.36 
1 3 0 0.401 k0.007 0.40 
1 6 0 0.200f0.007 0.207 
1 6 0.1 0.298f0.007 0.305 
1 6 0.2 0.396f0.007 0.400 
1 6 0.5 0.691 f0.012 0.694 

TABLE 1. A comparison for a number of cases of the effective diffusivity 7 predicted by self-consistent 
perturbation theory with the measured value for the simulation, 7 = t ( (xz ( ( t+T)  > - (xz( ( t ) ) ) /T  

7 

0.4 

0.3 

0.2 

0. I 

/ , I  , , I * , , ,  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
1x1 

FIGURE 8. A plot of the effective diffusivity ~ ( z ) ,  where z = sin 2@ for k, = 6, w = I ,  K = 0. (a )  ~ ( z )  
measured in the simulation. ( b )  ~ ( z )  predicted by third-order self-consistent perturbation theory. 
The errors on curve ( a )  are smaller than the data points. 

maximum value. Figure 8 exhibits a typical case. According to the simulation the 
effective diffusivity increases by about 100 yo when the helicity is increased to near 
its maximum value. I n  contrast the theoretical prediction is scarcely influenced by 
the presence of helicity, as is also shown in figure 8. The corrections to theory from 
the third-order terms in the perturbation expansion have been calculated and are 
negligibly small for all values of the helicity. 
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FIGURE 9. A point of ~ ( t )  = id (x2 ( t ) ) /d t  versus t = k,t for k, = 6, q, = 1, sin2 2+ = 0.9, K = 0. 
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We have demonstrated that the results of the simulation are correct and believable. 
First we showed in $5  that the short-time behaviour is correct for all values of the 
helicity, and secondly our results are consistent with those of Kraichnan (1970, 1976, 
1977), who also obtained a considerable enhancement of the effective diffusivity when 
considering the case of turbulence with maximum helicity. Also our results for the 
case of zero helicity agree very well with the results of perturbation theory and 
confirm its applicability in this case. 

An interesting effect in the case of near-maximal helicity is shown in figure 9, where 
r(t) (= id(x2(t))/dt) is plotted, in this case (with K = 0) for very large times. As the 
helicity is increased, the asymptotic region where q( t )  is a constant takes longer and 
longer to set in. This effect seems to be governed by a timescale which is somewhat 
larger than the obvious timescales of the turbulence and which increases with the 
increase of helicity. The work of Kraichnan also shows something of this effect. 

If these observations are accepted then the only conclusion is that  when helicity 
is present in the turbulence there are important non-perturbative contributions to  the 
effective diffusivity. We may then conjecture that the large timescale involved 
corresponds to the time required to tunnel through the barrier between the 
perturbative and non-perturbative regions. To study non-perturbative contributions 
i t  is appropriate to use a path-integral formulation of the problem (Drummond 1982), 
and this is being actively investigated. 

7. Conclusion 
We have shown how a Gaussian turbulent velocity field with variable helicity may 

be constructed. We have also presented a numerical algorithm by which the time 
evolution of a scalar field transported by the turbulence and subject to  molecular 
diffusion may be simulated by computer. By choosing the initial scalar field to be 
c?(~)(x) the quantities (x2((t)) and ((x2(t))2) averaged over the field can be measured 
and compared with theoretical expectations. The simulation was performed on the 
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j 1 2 3 

A3 
a3j 0.24997509 0.370791 37 0.379 233 54 

0.814 10000 -0.08766369 0.57406991 
0.007 332 32 0.663 1 1  191 - 

a 2 j  
0.662 75881 - - 

TABLE 2 

DAP at Queen Mary College, London. The number of statistics was large enough to 
give negligible measured errors on any of the measured quantities. The short-time 
behaviour of ( x z ( t ) )  and ( ( x z ( t ) ) z )  was compared with theory for various values of 
helicity and the other parameters controlling the turbulence. The agreement between 
the simulation and theory was very good in all cases. For long times the effective 
diffusivity defined in (6.7) was measured and found to be time-independent a t  
sufficiently large times. For zero helicity the measured effective diffusivity was 
compared with the prediction of a second-order perturbation calculation based on 
the method of Phythian & Curtis (1978). In  this case agreement was again excellent, 
and i t  was shown that the third-order corrections to theory were indeed negligible. 
However, for finite helicity rising to near maximal values the simulation gave 
measured effective diffusivities which increased by 100 76. The perturbation-theory 
estimates were hardly changed by the inclusion of helicity and hence were in total 
disagreement with the simulation of these effects, which are believable since we have 
been completely successful in measuring the short-time behaviour and the long-time 
behaviour with zero helicity. Also similar effects were observed by Kraichnan (1976, 
1977). We conjecture that non-perturbative contributions become sizable and important 
for non-zero helicity. We suspect that  the increasing length of evolution time needed 
to reach the asymptotic region of time-independent effective diffusivity is associated 
with the presence of such contributions. 

It is worth emphasizing that these conclusions have considerable significance for 
the corresponding process of magnetic diffusion in plasmas, since in that case the 
presence of helicity is vital to the characteristic phenomenon of magnetic-field 
generation (Steenbeck, Krause & Radler 1966; Moffatt 1979). It would not be going 
too far to  suggest that perturbqtion theory may also be misleading for the turbulence 
problem itself, since the transport of vorticity is to some extent analogous to the 
evolution of the magnetic field. 

Appendix 
The Nth-order generalized Runge-Kutta schemes for simulating the diffusion of 

a particle in a velocity field is obtained by introducing a sequence of N points 
and times (x0, x,, .. ., x N )  and ( t o ,  t,, . .., t N ) ,  where x0 t ,  x N  X + A X  and 
t N  = t + A t .  The intermediate points are given by 

5 ,  to 

i 

where i = 1,2,  ..., N ,  and qi are a set of independent random variables with unit 
variance and zero mean. 

Ideally the coefficients are chosen in such a way as to reduce the error in the 
simulated probability distribution to O(AtN+l) .  I n  fact, this is only exactly possible 
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for the case N = 2. We use the scheme N = 3 since i t  is possible to find a set of 
parameters that  minimizes the error a t  O(At3) .  The set of coefficients is given by the 
following relations : 

P31 = PZl = PI13 P 3 2  = P 2 2 ?  

Y1 = El? Yz = P;I+P;w Y3 = 1 ,  

and the numerical values in table 2. 
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